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5 Departamento de Matemática Aplicada, Universidad de Granada, 18071-Granada, Spain

E-mail: aptekaa@keldysh.ru, dehesa@ugr.es, andrei@ual.es and ryanez@ugr.es

Received 18 January 2010, in final form 16 February 2010
Published 16 March 2010
Online at stacks.iop.org/JPhysA/43/145204

Abstract
The radial position (〈rα〉, α ∈ R) and momentum (〈pβ〉, β ∈ (−1, 3))

expectation values of the D-dimensional Rydberg hydrogenic states (i.e.
states where the electron has a large hyperquantum number n) are rigorously
determined by means of powerful tools of the modern approximation theory
relative to the asymptotics of the varying orthogonal Laguerre and Gegenbauer
polynomials which control the corresponding wavefunctions in position and
momentum spaces.

PACS numbers: 02.30.Gp, 32.80.Rm

1. Introduction

The D-dimensional hydrogenic system with nuclear charge Z [1–4] is not only the main
prototype of D-dimensional physics [5, 6] but it also plays a relevant role in numerous
phenomena of quantum field theory [7], quantum chemistry [1, 5, 6, 8], quantum computation
[9] and nanotechnology [10, 11]. Beyond the three-dimensional hydrogen atom, the existence
of hydrogenic systems with dimensionality other than 3 has been observed for D < 3 [10]
and suggested for D > 3 [12]. Usually this problem is treated, as we will do here, by
using the standard Coulomb potential for the electron–proton interaction in all dimensions
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because it is both valuable and appropriate for understanding numerous physical phenomena.
Nevertheless, we should point out that other authors have indicated that Gauss’ law gives a
different potential (one that describes the flux due to a point source) which explicitly depends
upon the dimension (see e.g. [13]); in two-dimensional space this potential is a logarithmic
function of the distance separating the two particles [14].

The physical solutions of the corresponding Schrödinger equation, which describe the
wavefunctions of the quantum mechanically allowed states of the system, have been exactly
determined in both position [1, 3, 4] and momentum [15] spaces mainly because the associated
potential energy has the Coulomb form V (�r) = −Z/r , r = |�r|. The analytic expressions for
the wavefunctions are controlled by the Laguerre and Gegenbauer orthogonal polynomials in
position space, and only by the Gegenbauer polynomials in momentum space, as it is briefly
reminded in section 2.

The expectation values of arbitrary powers of the position and momentum coordinates
(hereafter to be denoted by 〈rα〉 and 〈pα〉, respectively) are the basic elements of the D-
dimensional hydrogenic system. This is so not only because they characterize the quantum
probability densities of the system in the two reciprocal spaces, but also because they determine
various fundamental quantities (diamagnetic susceptibility, kinetic energy, etc) and/or tightly
bound the macroscopic properties of the system [16].

This work focuses on the position and momentum expectation values of highly excited
(Rydberg) D-dimensional hydrogenic states. These states play a relevant role in the D-
dimensional physics [5] and Rydberg physics of atoms and molecules [17–19]. We calculate
the expectation values 〈rα〉 and 〈pα〉 of these Rydberg states by means of a methodology
based on powerful tools of the modern approximation theory relative to the asymptotics
(n → ∞) of the Laguerre L̃α

n(x) and Gegenbauer C̃α
n (x) orthogonal polynomials [20]. Let us

advance saying that our results considerably improve the values obtained by the semiclassical
approximation and other means [21] for these quantities.

The paper is organized as follows. In section 2, we gather the basic properties of the
D-dimensional hydrogenic problem which are needed for the rest of the work. In section 3, we
calculate the position expectation values 〈rα〉 of the Rydberg states by use of the asymptotics
of varying Laguerre polynomials. In section 4, we find the momentum expectation values
〈pα〉 of the Rydberg states by use of the asymptotics of varying Gegenbauer polynomials.
Finally some open problems and conclusions are given.

2. The D-dimensional hydrogenic problem: generalities

In this section, we briefly describe the bound states of the hydrogenic system in D dimensions.
We give their wavefunctions, probability densities and radial expectation values in the position
and momentum spaces. These states are characterized by the D integer hyperquantum numbers

(n, μ1 ≡ l, μ2, . . . , μD−1) ≡ (n, l, {μ}),
where n denotes the principal hyperquantum number and (l, {μ}) are the D −1 hyperquantum
numbers associated with the angular variables �D−1 ≡ (θ1, θ2, . . . , θD−1) which may have
all values consistent with the inequalities l ≡ μ1 � μ2 � · · · � |μD−1| ≡ |m| � 0. Atomic
units will be used throughout the paper.

The wavefunction of the bound states (n, l, {μ}) in position space has the form [2–4]
�(�r, t) = ψ(�r) exp(−iEηt), with

Eη = − Z2

2η2
, η = n +

D − 3

2
, n = 1, 2, 3, . . . , (1)

2
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for the energy, and

�n,l,{μ}(�r) = Rn,l(r)Y l,{μ}(�D−1) (2)

for the eigenfunctions expressed in spherical coordinates �r = (r, θ1, θ2, . . . , θD−1 ≡ φ) =
(r,�D−1) where r = (

x2
1 + · · · + x2

D

)1/2
, xi being the ith Cartesian coordinate. The radial part

is

Rn,l(r) =
[

1

2η

(
2Z

η

)D
]1/2

t−
D−2

2

√
ω2L+1(t)L̃(2L+1)

η−L−1(t), (3)

where ωα(t) = tα e−t , t = 2Zr
η

, L = l + D−3
2 and L̃α

k (x) denotes the Laguerre polynomial of
degree k and parameter α, orthonormal on [0, +∞) with respect to ωα . It is worth noting that
2L + 1 = 2l + D − 2 and η − L − 1 = n − l − 1, so that L̃2L+1

η−L−1(t) = L̃2l+D−2
n−l−1 (t).

The angular part is given by the hyperspherical harmonics [6]

Yl,{μ}(�D−1) = 1√
2π

eimϕ

D−2∏
j=1

C̃
(αj +μj+1)

μj −μj+1
(cos θj )(sin θj )

μj+1 , (4)

where αj = (D − j − 1)/2, and C̃α
k (x) denotes the Gegenbauer polynomial of degree

k and parameter α, orthonormal on the interval [−1, +1] with respect to the weight
ω∗

α(x) = (1 − x2)α− 1
2 . Then, the corresponding quantum–mechanical probability density

ρ(�r) = |� (�r, t)|2 = |ψn,l,{μ} (�r) |2 is given by

ρ(�r) = R2
n,l(r)|Yl,{μ}(�D−1)|2

= 1

2η

(
2Z

η

)D

t−(D−2)ω2L+1(t)
[
L̃(2L+1)

η−L−1(t)
]2|Yl,{μ}(�D−1)|2. (5)

This density function is characterized by the knowledge of its radial expectation values 〈rα〉
defined by

〈rα〉 =
∫

rαρ(�r) dDr =
∫ ∞

0
rα+D−1R2

n,l(r) dr

= 1

2η

( η

2Z

)α
∫ ∞

0
ω2L+1(t)

[
L̃(2L+1)

η−L−1(t)
]2

tα+1 dt (6)

where we have taken into account equation (5) and the orthogonality relation of the
hyperspherical harmonics [6] for the second equality, and equation (3) in the third equality.
It is worth pointing out that this functional of the Laguerre polynomials can be expressed
[4, 22, 23] in terms of (η, L) by means of a generalized hypergeometric function with unit
argument of the form 3F2(1), allowing for the explicit evaluation for the expectation values
with the lowest powers. Moreover, some recursion relations are also known [4, 22–24].

In the momentum space, the wavefunctions [4, 15] of the state (n, l, {μ}) are given by
�(�p, t) = φ(�p) exp(−iEηt), where φ(�p) is the Fourier transform of the position eigenfunction
ψ(�r), which has the expression

φ̃n,l{μ}(�p) = Mn,l(p)Yl{μ}(�′
D−1), (7)

where �p = (p, θ ′
1, θ

′
2, . . . , θ

′
D−1) ≡ (p,�′

D−1) with p = (
p2

1 + · · · + p2
D

)1/2
, pi being the ith

momentum Cartesian coordinate. The radial part turns out to be (with the notation introduced
above)

Mn,l(p) =
( η

Z

)D/2
(1 + y)3/2

(
1 + y

1 − y

)D−2
4 √

ω∗
L+1(y)C̃

(L+1)
η−L−1(y) (8)

3
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with y = (1 −η2p̃2)/(1 + η2p̃2), p̃ = p/Z and, as before, ω∗
α(y) = (1 −y2)α− 1

2 . The angular
part is again an hyperspherical harmonics of the type (4). Then, the momentum probability
density of the D-dimensional hydrogenic system γ (�p) = |�(�p, t)|2 = |φ(�p)|2 is given by

γ (�p) = M2
n,l(p)|Yl,{μ}(�D−1)|2. (9)

The radial expectation values 〈pα〉 of this momentum density are

〈pα〉 :=
∫

pαγ (�p) dDp =
∫ ∞

0
pα+D−1M2

n,l (p) dp

=
(

Z

η

)α ∫ 1

−1
ω∗

L+1(t)
[
C̃

(L+1)
η−L−1(t)

]2
(1 − t)

α
2 (1 + t)1− α

2 dt (10)

for all values of α within the range −2l − D � α � 2l + D + 2. Again, this functional
of Gegenbauer polynomials can be expressed [25] as a function of (α, η, L) in terms of
a generalized hypergeometric function 5F4 with unit argument, allowing us to find some
recursion relations for 〈pα〉 as well as the explicit values for α = 0, 2 and 4 [4, 25]. See also
[26] for the three-dimensional case.

3. Position expectation values 〈rα〉 for Rydberg states

In this section, we calculate the radial expectation values in the position space, 〈rα〉, α ∈ R,
for highly excited or Rydberg states (i.e. for states with large principal hyperquantum number
n) of D-dimensional hydrogenic systems. For an arbitrary (n, l, {μ})-state, we know from
equation (6) that

2η

(
2Z

η

)α

〈rα〉 =
∫ ∞

0
ων ′(t)

[
L̃(ν ′)

k (t)
]2

tα+1 dt (11)

with k = η − L − 1 = n − l − 1 and ν ′ = 2L + 1 = 2l + D − 2. Note that this integral
converges for all values of α > −2l − D. With the change t → x : t = kx, one has that

2η

(
2Z

η

)α

〈rα〉 = kα+1
∫ ∞

0
xν ′

e−kx
[
L̂(ν ′)

k,k (x)
]2

xα+1 dx, (12)

where the polynomial

L̂(ν ′)
k,k (x) ≡ k

ν′+1
2 L̃(ν ′)

k (kx) (13)

is orthonormal on [0, +∞) with respect to the weight xν ′
e−kx . We need to analyze its

asymptotics as n → ∞. For that, we assume that l ∈ {0, 1, . . . , n − 1} varies in such a way
that the limit

lim
n→∞

l

n
= s ∈ [0, 1) (14)

exists (clearly, the case of l constant is included). In particular, k → ∞ if and only if n → ∞,
and

lim
k→∞

ν ′

k
= 2s

1 − s
∈ [0, +∞).

With these assumptions the polynomials in (13) are orthogonal with respect to a varying
weight, i.e. a weight which depends on the degree k in the form

ωk(x) = xαk e−βkx with αk = ν ′ and βk = k. (15)

4
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According to Buyarov et al [20, corollary 5], in the weak-* sense6

[
L̂(ν ′)

k,k (x)
]2

ωk(x) −→ dμ[a,b](x) := dx

π
√

(x − a)(b − x)
, for k → ∞, (16)

where

a = 2

1 − s

(
1 −

√
1 − s2

)
, b = 2

1 − s

(
1 +

√
1 − s2

)
. (17)

Hence,

lim
k→∞

∫ ∞

0
xν ′

e−kx
[
L̂(ν ′)

k,k (x)
]2

xα+1dx = 1

π

∫ b

a

xα+1

√
(x − a)(b − x)

dx. (18)

With the change of variable z = (x − a)/(b − a), the last integral can be transformed into

lim
k→∞

∫ ∞

0
xν ′

e−kx
[
L̂(ν ′)

k,k (x)
]2

xα+1 dx

= aα+1

π

∫ 1

0
z− 1

2 (1 − z)−
1
2

(
1 +

b − a

a
z

)α+1

dz

= aα+1
2F1

(
−1 − α,

1

2
, 1,

a − b

a

)
, (19)

where we have used the following integral representation of the hypergeometric function
2F1(z):

2F1 (a, b, c, z) = �(c)

�(c − b)�(b)

∫ 1

0
tb−1(1 − t)c−b−1(1 − zt)−b dt.

Using equation (12) we obtain

lim
k→∞

2η

(
2Z

η

)α

〈rα〉 = (ak)α+1
2F1

(
−1 − α,

1

2
, 1,

a − b

a

)
. (20)

Taking into account that η = n + D−3
2 and k = η − L − 1 = n − l − 1 and equation (17), we

find(
Z

η2

)α

〈rα〉 � (
1 −

√
1 − s2

)α+1

× 2F1

(
−1 − α,

1

2
, 1,

2
(−1 + s2 − √

1 − s2
)

s2

)
, n → ∞. (21)

Let us analyze in more detail the case when l is uniformly bounded, which implies that
s = 0, a = 0, b = 4, and we get

lim
k→∞

∫ ∞

0
xν ′

e−kx
[
L̂(ν ′)

k,k (x)
]2

xα+1 dx = 1

π

∫ 4

0

xα+1/2

√
4 − x

dx = �
(
α + 3

2

)
√

π�(α + 2)
, (22)

so that using it in equation (12), we finally obtain

lim
k→∞

2η

(
2Z

η

)α

〈rα〉 = (4k)α+1

√
π

�
(
α + 3

2

)
�(α + 2)

, (23)

which describes the radial expectation values 〈rα〉 of Rydberg hydrogenic states, namely states
with uniformly bounded (α, l,D) and n → ∞.

6 We should point out that the result in [20] is stated under an assumption that limk αk/k > 0. However, it is easily
seen that it is also valid when this limit is 0.

5
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Taking into account that η = n + D−3
2 and k = η − L − 1 = n − l − 1, equation (23) can

be rewritten as (
Z

η2

)α

〈rα〉 � 2α+1�
(
α + 3

2

)
√

π�(α + 2)
, n → ∞; (24)

observe that the right-hand side is finite for α > −3/2. This expression corroborates
the corresponding semiclassical and quantum values obtained previously [21] in the three-
dimensional case by completely different means.

From equation (24), we obtain

〈r−1〉 = Z

η2
, 〈r0〉 = 1, 〈r〉 � 3η2

2Z
, 〈r2〉 � 5

2

(
η2

Z

)2

for the first few expectation values of the Rydberg hydrogenic system in agreement with the
results of Ray et al [24] and Tarasov [22]; in fact, the first two expressions are exact.

If s > 0 in equation (14), then the asymptotic expression in equation (19) makes sense
for any α ∈ R. As we observed before, this is not the case when s = 0 (i.e. for finite l and
n → ∞): the asymptotics in equation (24) is valid for α > −3/2, while the right-hand side
in equation (11) makes sense for α > −2l − D. This gap can be traced back to the weak-∗
asymptotic formula (16). To extend the result (24) when s = 0 to the missing values of α,
we can either use finer asymptotic results for the Laguerre polynomials (such as their strong
asymptotics, in the spirit of [27, 28]) or follow a different approach that we illustrate next.

The problem of the determination of the asymptotics of the expectation value of the
negative powers of r from the critical value − 3

2 down to −2l − D is very relevant in the
three-dimensional case for the analysis of the energy and other atomic properties of Rydberg
atoms consisting of an electron in a high-(nl) quantum state moving in the field of a polarizable
core; in particular, they control the ionization energy of the Rydberg electron, as first shown
by Drachman [29]. This problem can be solved for any dimensionality by taking into account
the following connection formula between the expectation values of the positive and negative
powers of r found by various authors (see e.g. [24, 29]):

〈r−q〉 =
(

2Z

η

)2q−3
�(2L + 3 − q)

�(2L + q)
〈rq−3〉. (25)

This expression together with equation (24) allows us to find the asymptotics

〈r−q〉 � Zq

η3

�(2L − q + 3)

�(2L + q)

23q−5�
(
q − 3

2

)
√

π�(q − 1)
, n → ∞, (26)

valid for q ∈ (3/2, 2L + 3). In this way, we cover the full range of the admissible parameters
α, except for the critical value α = −3/2. In particular, equation (26) with q = 2 and 3
provides the exact values

〈r−2〉 = Z2

η3
(
L + 1

2

) , 〈r−3〉 = Z3

η3(L + 1)
(
L + 1

2

)
L

,

as well as for q = 4 yields

〈r−4〉 � 3Z4

2η3
(
L + 3

2

)
(L + 1)

(
L + 1

2

)
L

(
L − 1

2

)
for all Rydberg states (n → ∞).

6
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4. Momentum expectation values 〈pα〉 for Rydberg states

We can turn now to the radial expectation values in the momentum space, 〈pα〉, α ∈ R, for
the Rydberg states (i.e. states with large n). We begin with equation (10) for the expectation
values 〈pα〉 of an arbitrary state with quantum numbers (n, l, {μ}), which may be rewritten as( η

Z

)α 〈pα〉 =
∫ 1

−1
ω∗

ν(t)
[
C̃

(ν)
k (t)

]2
(1 − t)

α
2 (1 + t)1− α

2 dt (27)

where k = η−L−1 = n− l −1, ν = L+ 1 = l + D−1
2 and ω∗

ν(t) = (1− t2)ν− 1
2 . Observe that

this integral converges only when −2ν−1 < α < 2ν +3, i.e. when −2l−D < α < 2l +D+2.
Again, we need to study the asymptotics of the integrand in (27) when n → ∞ in such

a way that (14) holds. In this case, the Gegenbauer polynomials C̃ν
k (t) are orthonormal

with respect to a weight which eventually depends on k (varying weight). However, under
assumptions (14), the weak-∗ asymptotics of these polynomials is known, see [20, 30]. Indeed,
by equation (14) and [20, corollary 4],

ω∗
ν(t)

[
C̃

(ν)
k (t)

]2 −→ dμ[a,b](x), for k → ∞, (28)

in the weak-∗ sense, but now

b = −a =
√

1 + 2s

1 + s
∈

(√
3

2
, 1

]
.

Hence, equation (27) implies that

lim
k→∞

( η

Z

)α 〈pα〉 = 1

π

∫ b

−b

(1 − t)
α
2 (1 + t)1− α

2√
b2 − t2

dt, (29)

and the right-hand side makes sense for any real α as long as s > 0.
If l is uniformly bounded, we obtain s = 0 and b = 1, so that

lim
k→∞

( η

Z

)α 〈pα〉 = 1

π

∫ +1

−1

(
1 − t

1 + t

) α−1
2

dt

=
⎧⎨
⎩

α − 1

sin (π(α − 1)/2)
, −1 < α < 3, α = 1,

2/π, α = 1,

(30)

where η = n + D−3
2 . This gives us the asymptotics for the momentum expectation values of

the Rydberg states (n, l, {μ}) of a D-dimensional hydrogenic system with uniformly bounded
(l, {μ} ,D). Note that for the integer values α = 0, 1 and 2, this expression renders the exact
values

〈p0〉 = 1, 〈p〉 = 2Z

πη
, 〈p2〉 = Z2

η2

for the normalization of the momentum wavefunction (7), the centroid of the momentum
density and for the kinetic energy of the system, respectively.

However, as it happened for the position expectation values, the expression in
equation (30) is valid only for a subrange α ∈ (−1, 3) of all possible values of the parameter
α, i.e. −2l−D < α < 2l +D +2. Again, this gap can be traced back to the weak-∗ asymptotic
formula (28). Hence, to extend the result (30) to the missing values of α, we could think
of using a recurrence of the form (25). Unfortunately, the only available connection formula
between positive and negative powers is

〈p−β〉 =
( η

Z

)2β+2
〈pβ+2〉, β = 0, 1, 2, . . .

7
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2 1 1 2 3 4

2

3

4

5

Figure 1. Plot of the function on the right-hand side of (31) for α ∈ (−2, 4).

Observe that the mapping −β �→ β + 2 preserves the interval (−1, 3), so this approach does
not take us too far. The problem of finding an asymptotic expression for the moments outside
of the range α ∈ (−1, 3) remains open except for the case α = −1 which has been recently
analyzed [31] in a detailed way.

Finally, motivated by the modern achievements of Rydberg physics [19], we mention
the problem of the asymptotics of 〈pα〉 for D-dimensional states (n, l, {μ}) when (D, {μ})
are bounded, and both n and l tend to infinity in such a way that n − l =constant. Observe
that this case corresponds to the value s = 1 in equation (14). From equation (29) we could
heuristically infer that

lim
n→∞

( η

Z

)α

〈pα〉 = 1

2π

∫ 1

−1

(2 − √
3t)

α
2 (2 +

√
3t)1− α

2√
1 − t2

dt, (31)

which gives us the first term of the asymptotics. The plot of the right-hand side as a function
of α is given in figure 1.

Let us also point out that for the particular cases α = 0 and α = 2, we obtain the exact
values of 〈p0〉 and 〈p2〉, previously given. In summary, the cases (i) s > 0 and (ii) s = 1
assuming l → ∞, are fully solved by means of equations (29) and (31), respectively; the case
s = 0 (i.e. when l is finite and n → ∞) is open.

5. Conclusions

The position and momentum expectation values of 〈rα〉 and 〈pβ〉 of D-dimensional Rydberg
hydrogenic states (n → ∞) are rigorously determined in terms of D and the hyperquantum
principal and orbital quantum numbers; when l = o(n), the values of α and β should be
restricted to α = −3/2 and β ∈ (−1, 3). We have used the asymptotics of the Laguerre
and Gegenbauer polynomials, which control the position and momentum wavefunctions,
respectively, of the Rydberg state. It is worth noting that their parameters (hence, their
orthogonality weights) depend on the polynomial degree, so that standard asymptotic results
are not applicable.

The calculation of 〈pβ〉 with β /∈ (−1, 3) remains open and probably requires the use of
finer asymptotic results for the orthogonal polynomials, such as e.g. their strong asymptotics
in the spirit of Aptekarev et al [27]. It is interesting to mention here that the case β = −1 has
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been solved [31] in 2009, though not completely since the regime when s = l/n is finite still
remains open.
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Lombardi J R 1980 Phys. Rev. A 22 797

[16] Dehesa J S, Gálvez F J and Porras I 1989 Phys. Rev. A 39 494
Dehesa J S, Gálvez F J and Porras I 1989 Phys. Rev. A 40 35
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